Macaulay matrix for Feynman integrals: linear relations and intersection numbers
نویسندگان
چکیده
A bstract We elaborate on the connection between Gel’fand-Kapranov-Zelevinsky systems, de Rham theory for twisted cohomology groups, and Pfaffian equations Feynman Integrals. propose a novel, more efficient algorithm to compute Macaulay matrices, which are used derive systems of differential equations. The matrices then employed obtain linear relations $$ \mathcal{A} A -hypergeometric (Euler) integrals integrals, through recurrence projections by intersection numbers.
منابع مشابه
Solving Recurrence Relations for Multi-Loop Feynman Integrals
We study the problem of solving integration-by-parts recurrence relations for a given class of Feynman integrals which is characterized by an arbitrary polynomial in the numerator and arbitrary integer powers of propagators, i.e., the problem of expressing any Feynman integral from this class as a linear combination of master integrals. We show how the parametric representation invented by Baik...
متن کاملFeynman integrals and motives
This article gives an overview of recent results on the relation between quantum field theory and motives, with an emphasis on two different approaches: a “bottom-up” approach based on the algebraic geometry of varieties associated to Feynman graphs, and a “top-down” approach based on the comparison of the properties of associated categorical structures. This survey is mostly based on joint wor...
متن کاملPeriods and Feynman integrals
We consider multi-loop integrals in dimensional regularisation and the corresponding Laurent series. We study the integral in the Euclidean region and where all ratios of invariants and masses have rational values. We prove that in this case all coefficients of the Laurent series are periods.
متن کاملFeynman parameter integrals
We often deal with products of many propagator factors in loop integrals. The trick is to combine many propagators into a single fraction so that the four-momentum integration can be done easily. This is done commonly using so-called Feynman parameters. We rewrite the product of propagators 1 (A 1 + ii)(A 2 + ii) · · · (A n + ii) , (1) where A i has the form of p 2 − m 2. The sign of A i is not...
متن کاملBlowing up Feynman integrals
In this talk we discuss sector decomposition. This is a method to disentangle overlapping singularities through a sequence of blow-ups. We report on an open-source implementation of this algorithm to compute numerically the Laurent expansion of divergent multi-loop integrals. We also show how this method can be used to prove a theorem which relates the coefficients of the Laurent series of dime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2022
ISSN: ['1127-2236', '1126-6708', '1029-8479']
DOI: https://doi.org/10.1007/jhep09(2022)187